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Ion specific effects on phase transitions in protein solutions
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A recent Monte Carlo simulation determined the potential of mean force between two lysozyme molecules
in various aqueous solutions [M. Lund et al., Phys. Rev. Lett. 100, 258105 (2008)]. The study involved a
combination of explicit solvent and continuum model simulations and showed that there are significant ion-
specific protein-protein interactions due to hydrophobic patches on the protein surfaces. In this paper we use
the results of their study to determine the phase diagram for lysozyme for aqueous solutions of NaCl and Nal.
Two of the three phase diagrams have a stable fluid-fluid critical point, while the third has a slightly metastable
critical point. This results from a secondary extremum in the potential associated with a repulsive interaction.
This repulsive interaction reduces the effective range of the attractive interaction and produces a metastable

critical point. We compare the results of one of these phase diagrams with that for a model that includes
ion-dispersion forces, but does not contain solvent structural effects.
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I. INTRODUCTION

Hofmeister effects refer to the relative effectiveness of
anions or cations on a wide range of phenomena and date
back to the original work of Hofmeister in 1888 [1]. Ex-
amples include the surface tension of electrolytic solutions,
bubble-bubble interactions, micelle and microemulsion
structure, and wettability [2]. Hofmeister’s original observa-
tion was that protein salting out depends on salt type, as well
as on the salt concentration. In general, the effective interac-
tions between most charged and neutral objects in aqueous
solutions depend not only on the salt concentration, but also
on the salt type. This fact has remained a challenge to theo-
rists; a wide range of explanations have been proposed [3,4],
most of which are not of a quantitative nature. Recently,
however, there have been two parallel developments that
have provided considerable insights as to the causes of the
Hofmeister effect. The first approach emphasizes the impor-
tance of including nonelectrostatic, ion-dispersion forces
[2.3,5,6] that had previously been neglected in standard treat-
ments such as the Derjaguin-Landau-Verwey-Overbeek
theory. In this treatment water is treated as a continuum,
whose properties are described by a bulk dielectric constant
and ion-dispersion forces between ions and solute particles
are included, together with the standard Coulomb and van
der Waals interactions to obtain a more self-consistent
theory. In the second approach molecular dynamic simula-
tions have been carried out to obtain the effective interac-
tions between ions and interfaces, including the air-water
interface [7,8] and the hydrophobic solid-water interface
[9,10]. In these MD simulations, water, surface, and ion in-
teractions are described by a phenomenological model (pa-
rametrized by Lennard-Jones interaction ranges and depths,
and partial charges) whose parameters are chosen to match
experimental bulk data. These studies have been successful
in explaining a variety of ion-specific results, including ex-
plaining the adsorption of weakly hydrated ions such as bro-
mide or iodide at the air-water interface [7,8] and the fact
that large halide ions are attracted to hydrophobic solid sur-
faces, while smaller anions are repelled [10]. These two
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complementary approaches have demonstrated the impor-
tance of including short-range interactions that account for
both ion dispersion forces and short-range ion hydration ef-
fects. Indeed, a recent paper uses a parametrized potential of
mean force that includes both ionic dispersion forces and
short-range ion hydration to study ion specific effects for the
double layer pressure between two uncharged interfaces [11].

The most recent application of molecular dynamics simu-
lations has been to provide a step toward including a solvent
induced ion-specific surface interaction in a Monte Carlo
(MC) study of the interaction between lysozyme molecules
in an aqueous salt solution [12]. In this study the solvent is
treated as a dielectric continuum, but solvent structure effects
are implicitly included. The authors obtained the potential of
mean force between two lysozyme molecules in various so-
lutions of sodium chloride and sodium iodide, respectively.
The corresponding second virial coefficients were shown to
be in reasonable agreement with experimental data. They
find that there are at least two effects responsible for the
Hofmeister series in this approach. Namely, it is the direct
interaction of hydrated anions with positively charged amino
acid residues as well as the affinity of these anions for hy-
drophobic patches at protein surfaces. The former interac-
tions are stronger for chloride than for iodide, whereas the
opposite is true for the second effect. Thus the effective
protein-protein interaction in a particular salt solution results
from a subtle balance between these (and perhaps other) ef-
fects. The fact that there is a stronger lysozyme-lysozyme
interaction in aqueous Nal than NaCl is due to the hydropho-
bic effect of iodide surpassing the ion-pairing effect of chlo-
ride.

An important property of an electrolytic solution of pro-
teins is its phase diagram. It has been shown for a significant
number of proteins that optimal crystal nucleation tends to
occur when the solution is prepared in the vicinity of a meta-
stable critical point of a protein-poor, protein rich fluid-fluid
phase separation curve [ 13—15]. Thus it is of interest to know
the phase diagrams of the model of lysozyme obtained in the
above molecular dynamic simulations. In this paper we
present MC simulations of these phase diagrams for several
of the electrolyte solutions considered in Ref. [12] and com-
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FIG. 1. (Color online) Total potentials for the (a) 0.2 M NaCl, (b) 0.3 M NaCl, and (c) 0.2 M Nal electrolyte systems. The solid line is

the fitted polynomial and dots are data obtained from MC simulations.

pare the results of one phase diagram (0.2 M NaCl) with a
corresponding calculation using a model based on ion-
dispersion forces [5,16]. We present in Sec. II a summary of
the model and our simulation details. We give our results in
Sec. III and present a brief conclusion in Sec. IV.

II. MODEL AND METHODS

The model of lysozyme in aqueous salt solution model, as
given by Lund et al. [12], consists of the following: each
amino acid on the protein is represented as a soft charge-
neutral sphere, located at the residue center of mass given by
x-ray structure 4LZT in the protein data bank. In addition,
the protonation sites of all titratable groups are included at
their original positions and their corresponding electrostatic
charges are set for a pH of 4.7. The rigid protein molecules
are allowed to rotate and translate in their MC simulations,
while mobile salt and counter ions are explicitly included as
soft spheres. The solvent is treated as a dielectric continuum
and solvent structural effects (hydrophobicity) are implicitly
accounted for. Specifically, the interaction energy between
the ions and the nearest hydrophobic residues, V,,(r;), is
based on an empirical potential, from results obtained from
MD simulations of ions in the presence of an air-water inter-
face [10,17]. The expression for the total interaction energy,
from which the angular averaged potential of mean force
(PMF) was calculated, is given as
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where [z=7.1 A is the Bjerrum length, ri; is the distance
between particles i and j, z is their charge number, and €;;
and o;; are the Lennard-Jones parameters. From the above
expression for SU, Lund et al. used MC simulations to cal-
culate the angular averaged PMF, W(r), between the
lysozyme molecules for various aqueous electrolyte solu-
tions. With their PMF data, we fit these potentials for the
following systems: 0.2 M NaCl, 0.3 M NaCl, and 0.2 M
Nal, as shown in Fig. 1. It is important to note that the
simulations carried out in Lund et al. were conducted at T
=298 K=T,. We use these potentials for the range of tem-
peratures considered in this paper. For each model, we have
defined the corresponding value of o to be the smallest value
of r at which the potential crosses W=0. For the three mod-

ij

els examined (0.2 M NaCl, 0.3 M, NaCl and 0.2 M Nal),
these values are nearly identical and are equal to 28.84,
28.84, and 28.88 A, respectively. Therefore, for the remain-
der of the paper, o is to be interpreted as the o for the
corresponding model being referenced. In addition, the po-
tentials have been set equal to O for values of r/o greater
than 1.8, 2.06, and 2.02, respectively.

A. Methods

Using these PMFs, we perform MC simulations in order
to determine the corresponding phase diagrams and pair cor-
relation functions. Our systems consist of N=500 particles in
cubic simulation cells subject to periodic boundary condi-
tions. The same number of MC cycles are performed for both
equilibration and production, although the total number var-
ies depending on the type of simulation. A single MC cycle
is defined as N=500 MC steps where a step is a random
choice from the usual repertoire of MC moves.

1. Fluid-fluid coexistence

We use the Gibbs ensemble MC method [18,19] to obtain
the equilibrium coexisting densities of the protein-poor and
protein-rich fluid phases. This method avoids problems asso-
ciated with the formation of an interface between the dense
and dilute fluid phases that would otherwise be present in
single cell simulations. In this ensemble, two physically
separate simulation cells are coupled to the same heat bath
and are used to emulate the two fluid phases that are in
contact. Standard particle displacements are performed
within each simulation cell; in addition, volume and particle
exchanges are performed between the two cells. These ex-
changes are chosen such that the total volume and number of
particles of the system are conserved and the simulations
obey detailed balance. On average, we chose the ratio of
particle displacements to volume moves to be 100:1; the fre-
quency of particle transfers is chosen to give reasonable ac-
ceptance rates of approximately 1-3 %. The equilibrium and
production run times are at least 2 X 10> MC cycles each,
where a MC cycle in this ensemble is N=500 attempts at one
of three randomly selected trial moves: particle displace-
ments, volume exchanges, or particle exchanges.

2. Fluid-solid coexistence

Fluid-solid coexistence is obtained via the Gibbs-Duhem
method. This method involves integrating the first-order
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Clausius-Clapeyron equation Z_P=_AThu where P is the sys-

tem pressure, 8=1/kT, A indicates a difference between the
liquid and solid phases, and /# and v are the molar enthalpies
and volumes, respectively. One caveat to this approach is
that it requires the knowledge of an initial coexistence point
on the BP-Bu plane. Consequently, we carry out a series of
N-P-T simulations along an isotherm to determine the equa-
tion of state for both the fluid and solid phases. The equilib-
rium and production times for each N-P-T simulation are
taken to be equal and at least 2 X 10° MC cycles. Each iso-
therm requires a minimum of 50 data points to obtain accu-
rate fits. Once the equations of state are obtained, they are fit
to the following form for the liquid; BPL,-q=Z;’;lc,-(l—_’;—p i and
,BPS(,,:Efzocip’ for the solid, where the a, c¢;, and m are dis-
tinct for each isotherm examined and chosen to best fit the
data (whereas in other studies, one typically use m=3, we
find it necessary to increase it to 5 or 6 in the cases studied
here.) Integration of the equations of state will yield the free
energies and chemical potentials for the liquid and solid.
However, as a result of the integration, one must know the
free energy of the solid at a particular reference density along
the solid isotherm. To calculate this free energy, we use the
Frenkel-Ladd method for soft-core continuous potentials
[20] to harmonically couple the particles to lattice sites. With
the free energy of the solid at the reference state known,
straightforward integration produces the expressions for the
corresponding chemical potentials and thus the initial coex-
istence points are determined via the conditions for mechani-
cal and chemical coexistence in equilibrium, i.e., P;;,(p.;,)
=Pso(pso) and pi1ig(prig) = tsoi(pso) Where pp, and pg, are
the coexisting liquid and solid densities.

3. Accurate determination of T,

It is known that systems with short-range attractive inter-
actions (<1.250) give rise to liquid-liquid phases separa-
tions that are metastable with respect to the solubility curve
[21], i.e., freezing preempts fluid-fluid phase separation.
Choosing as an initial state a position near a metastable
fluid-fluid critical point is desirable for experimentalists try-
ing to grow high quality protein crystals from solutions as
nucleation rates reach a maximum in that region [15]. An
important observed characteristic of metstable fluids is their
small and negative second virial coefficients B, first noted by
George and Wilson [13]. As will be discussed in more detail
in our results, the phase diagram for the 0.3 M NaCl system
is only very slightly metastable as a consequence of an ad-
ditional repulsive maximum in the potential. This is impor-
tant because the system would otherwise exhibit a stable
fluid-fluid transition without the addition of the repulsive
maximum. Therefore in an effort to substantiate that this sys-
tem is indeed metastable, an accurate estimate of the critical
temperature is determined by the Bruce-Wilding finite-size
scaling method [22]. The location of the critical point can be
obtained by matching the probability distribution of the or-
dering operator M = % with the universal distribution char-
acterizing the Ising class. The number density and energy
density are defined by p=L"“N and u=L"%U, respectively,
with U the total energy of the system and d the dimension of
the system. To obtain the value of T.(L) for a given simula-

PHYSICAL REVIEW E 79, 031904 (2009)

0.9F
0.8 .
07
0.6
0.55

00 02 04 06 08 1.0
po?

FIG. 2. Phase diagram curve obtained from Monte Carlo simu-
lations for the aqueous lysozyme solution with NaCl electrolyte at
0.2 M. The fluid-fluid separation curve is stable. The solid circles
are simulation data and the star is our estimate of the critical point
as determined by a rectilinear diameter fit. Note that the data for
liquid line overlap the data from the dense fluid phase.

tion cell length L, we run a series of grand canonical en-
semble simulations and “tune” the values of chemical poten-
tial, temperature, and s until the probability distribution of
the ordering operator P(M) collapses onto the universal
P*(M) for the Ising model. When good estimates of the tun-
ing parameters are obtained, we perform longer runs of 2
% 10° MC cycles to collect accurate statistics followed by a
histogram reweighting procedure to obtain accurate values of
the tuning parameters at criticality. This procedure is re-
peated for increasing values of L and then extrapolated to the
limit L= to determine the critical temperature of the infi-
nite system. A detailed discussion on this procedure can be
found in Li ef al. [23].

III. RESULTS

We have determined the complete phase diagrams for
three different aqueous solutions of lysozyme, 0.2 M and
0.3 M NaCl and 0.2 M Nal shown in Figs. 2, 3, and 4, re-
spectively. In the case of 0.2 M NaCl, we obtain a “normal”
phase diagram, in that the fluid-fluid coexistence curve is
stable. In the case of 0.3 M NaCl, we find that there is a
metastable fluid-fluid coexistence curve, although the meta-
stability gap [defined as (T,—T,)/T,, where T, denotes the
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FIG. 3. (Color online) Phase diagram curve obtained from
Monte Carlo simulations for the aqueous lysozyme solution with
NaCl electrolyte at 0.3 M. The fluid-fluid separation curve is met-
stable. The open circles are the liquid-solid coexistence data and
solid diamonds are the fluid-fluid coexistence data. The solid star is
our estimate of the critical point for the infinite system as deter-
mined from finite size scaling.
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FIG. 4. Phase diagram curve obtained from Monte Carlo simu-
lations for the aqueous lysozyme solution with Nal electrolyte at
0.2 M. The fluid-fluid separation curve is stable. The solid circles
are simulation data and the star is our estimate of the critical point
as determined by a rectilinear diameter fit. Note that the data for
liquid line overlap the data from the dense fluid phase.

critical temperature for the finite system, and 7; denotes the
temperature on the solid curve that corresponds to the critical
density] is very small. We estimate the triple point for the
0.2 M solution to be approximately 0.47,. The situation for
the 0.3 M NaCl solution is a little trickier, since the solid
branch of the solid-liquid coexistence curve almost touches
the fluid-fluid curve. In order to determine the critical point
for the infinite system, we employ the method of finite size
scaling (FSS), discussed briefly in Sec. IT A 3. Our results for
T.(L) are shown in Fig. 5 (see the figure caption for more
details). The extrapolation L— o gives us a reliable estimate
of the critical point, T,(), for the bulk system. However, the
N-P-T simulations we use to determine the solid-liquid curve
are also subject to finite size effects and we are unable to
extrapolate these to obtain their bulk limits. Therefore it is
difficult to be precise about the magnitude of the metastabil-
ity gap. Thus it would seem prudent to conclude that fluid-
fluid critical point for 0.3 M NaCl is right on the edge of
being metastable. In contrast to our results for this model,
another model that takes into account ion-dispersion forces
[16] leads to a large metastability gap of 8.1%.

For the 0.2 M NaCl and 0.2 M Nal solutions, we obtain
estimates of the critical points by fitting the fluid-fluid coex-
istence data to the following standard equations:

pi+p

ngpc+A|T—TC, (2)
0.767}
0.763¢
=
0.759}
0.755t ‘ ‘ ‘
0 0.004 0008 0012

L—(H+l)/v

FIG. 5. FSS results for 7,.(L) as a function of L™*” for the
0.3 M NaCl electrolyte solution. v is the critical exponent for the
correlation length and @ is the universal correction to the scaling
exponent. For the 3D Ising universality class, »=0.629 and S
=0.326. By extrapolating to infinite volume (L — ), we can obtain
an estimate of the true bulk behavior: T,()=0.755T,. For more
details of FSS, see Ref. [23]
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FIG. 6. (Color online) Plot of the liquid and solid pair correla-
tion functions corresponding to coexisting liquid and solid states for
(@) 02M Nal at T=1.6T), P=20.4090°/kT,, p;,0°=1.069,
Psoio=1.104, and (b) 0.3 M NaCl at T=0.91T,, P=2.0020>/kT,),
PLig =0.754, pg,0°=0.798.

pl_png|T_Tc'B7 (3)

where T, and p. are the critical temperature and density,
respectively, and B=0.326 is the three-dimensional (3D)-
Ising critical exponent. Finite size effects would have to be
taken into account to obtain the critical point parameters for
the infinite system. In the case of 0.2 M Nal (Fig. 4), we
estimate the triple point temperature to be around 0.77},. We
are not able to make direct comparisons between simulation
results and experimental data for either salt, however, since
to the best of our knowledge, no experimental data exist for
the molarities studied in this paper. However, for solutions
with 0.5 M or greater concentrations of NaCl, experimental
data are available. These data show the presence of a meta-
stable fluid-fluid phase for all salt concentrations greater than
0.5 M [24]. It is also likely that there is a metastable critical
point for concentrations somewhat smaller than 0.5 M, given
that the NaCl solution at that molarity exhibits a large meta-
stability gap [24].

It is also interesting to note that for both stable phase
diagrams (Figs. 2 and 4) there is a metastable continuation of
the liquidus curve along the high density branch of the fluid-
fluid coexistence curve below the triple point 7;,. Namely, as
we continue our simulation of the coexisting liquid phase in
the liquidus line below T,,, this becomes the metastable
dense liquid phase we have obtained by our Gibbs ensemble
method.

Figure 6 plots the pair correlation functions of the liquid
and solid at conditions corresponding to phase coexistence
for the 0.2 M Nal and 0.3 M NaCl lysozyme solutions, re-
spectively. In order to show that the solid does indeed exhibit
long range order, we ran simulations of N=4000 particles to
probe larger distances. It is clear that both liquid and solid
correlation functions display an oscillatory behavior. The
reason that it does so for the liquid phase is due to its high
density. Note that in Figs. 2 and 4 the separation between the
liquid and solid coexistence densities is very small. How-
ever, the correlation functions for the solid still shows a
strong peak at the largest distances, suggesting a crystal
structure, while it already decays to 1 for the liquid phase
after a few (~4.5) os.

One can see from the phase diagrams of Figs. 3 and 4 that
the details of the corresponding potentials [Figs. 1(b) and
1(c)] are important in determining the phase diagram. Al-
though the attractive wells of their potentials are similar in
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TABLE 1. Parameters of interest at T..

System T. Ooff B;(T= T.) R

0.2 M NaCl 0.8667 0.976 -2.10 0.377
0.2 M Nal 1.337, 0.961 -2.18 0.423
0.3 M NaCl 0.757T, 1.069 -2.19 0.205

both the width [25] and the depth, their phase diagrams are
very much different. The 0.3 M NaCl solution has a meta-
stable fluid-fluid coexistence curve while the 0.2 M Nal so-
lution has a stable phase separation curve. This can be
largely attributed to the fact that the potential for the 0.3 M
NaCl has a repulsive region which reduces the effective
range of the attractive interaction. In other words, the critical
point of the fluid-fluid coexistence curve is driven to a lower
temperature by the additional positive extremum in Fig. 1(b).
This behavior was also observed by Brandon et al. [26], in
their study of models with multiple extrema. They argued
that for more complicated potentials than those with a single
extremum, the effective range of attraction defined by Noro
and Frenkel [27] was more useful in characterizing the phase
diagrams than, say, the width of the attractive well. Noro and
Frenkel [27] developed an extended law of corresponding
states, in which they introduced an energy scale (the depth of
the attractive well), an effective hard core Ooffs and a range
R. To do this for systems whose potentials are continuous,
one divides the potential into attractive and repulsive terms,
Uay and v, respectively, and defines an “equivalent” hard-
core diameter for the repulsive part of the potential using an
expression suggested by Barker and Henderson [28]:

Oeff = fo dr1 —exp(=v,,,/kT)]. (4)

The reduced second virial coefficient is then defined as B

2
oy, .
:Bz/(z—;ﬁ). One then defines an effective range R of the

attractive interaction by equating B;k of a square well system
with that of the system in question. (Note that the range of
the attractive interaction for a square well system is defined
unambiguously, whereas this is not the case for other mod-
els.) Although this range is temperature dependent, it pro-
vides a useful length scale for models such as those that have
been used in colloidal and protein solutions. The value of
this reduced second virial coefficient at the critical point has
been found to be relatively constant for a wide range of
models that are commonly used to describe phase transitions,
ranging from extremely narrow attractive wells (Baxter’s ad-
hesive hard sphere model) to the van der Waals limit of
infinitely long-range attractive wells [27]. These values are
in the range —2.36<B:(TC)$—1.33. We show the reduced
second virial coefficient B;k (T,), the effective hard core di-
ameter o, and the range R for all three potentials studied
here in Table I. All our values for B: (T,) are in the same
range as for the models cited in Ref. [27]. Noro and Frenkel
also estimated that the fluid-fluid transition became meta-
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stable with respect to freezing when R=0.14, consistent with
a variety of models that had been studied at that time. Sub-
sequently, however, it was shown that for the square well
model R=0.25 [21]. This latter value has been proposed
based on a simple van der Waals model for both the fluid and
the solid phase [29] and by a phenomenological argument
using a cell model for the solid [30]. If we include the region
of repulsive interaction associated with the secondary maxi-
mum in our calculation of the effective hard core diameter,
we find that the range for the 0.3 M NaCl system that is
slightly metastable is R=0.20.

Finally, we note that we have also run preliminary N-P-T
simulations for the 0.3 M Nal solution. However, no phase
diagram was calculated due to the fact that the difference in
density between the liquid and solid isotherms is extremely
small even when the pressure is sufficiently high. In addition,
at higher pressures, the density on the liquid isotherm has
large fluctuations about its average; in fact, it typically tran-
sitions from the liquid phase to the solid phase where it
remains stuck for the remainder of the simulation. Therefore,
since we are unable to distinguish sufficiently accurately be-
tween the liquid and solid phases, we are unable to perform
an accurate calculation of the 0.3 M Nal phase diagram by
this method.

IV. CONCLUSION

We have studied models of three electrolyte solutions of
lysozyme and demonstrated the effects of hydrophobic sur-
face forces on the phase diagram of lysozyme. Although the
molarities studied are too small to see a significant metasta-
bility gap, the 0.3 M NaCl solution does have a slightly
metastable fluid-fluid critical point. Interestingly, the small
range R associated with this is produced by the effect of a
repulsive interaction associated with a secondary extremum.
In the absence of that repulsive region the system would
have a stable fluid-fluid transition. This is another example of
a phenomenon first studied by Brandon et al. [26]. It is not
clear what the physical origin of the secondary maximum is
for the model of Lund et al. [12], but Brandon ef al. [26]
attribute their secondary maximum to the effect of water re-
structuring near the solute particles. It would be interesting
to have a better understanding of its origin for the current
model. As we are unable to compare the results of this study
with any experimental results for lysozyme, we cannot deter-
mine the accuracy of the model. It would seem likely that
further developments will include in addition the specific
ion-dispersion effects discussed by Bostrom et al. [5]. These
will require more accurate quantum mechanical calculations
of the amplitudes of the ion-dispersion forces; such calcula-
tions are currently being carried out [31,32].
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